Atomic Theory and Bonding

Textbook pages 168-183

Before You Read

What do you already know about Bohr diagrams? Record your answer in the lines below.

What are atoms?

An **atom** is the smallest particle of any element that retains the properties of the element.

The particles that make up an atom are called **subatomic particles**. Atoms are composed of three subatomic particles: protons, neutrons, and electrons.

Name	Symbol	Electric Charge	Location in the Atom	Relative Mass
Proton	р	1+	Nucleus	1836
Neutron	n	0	Nucleus	1837
Electron	е	1 –	Surrounding	1
			the nucleus	

Nuclear charge is the electric charge on the nucleus. This charge is always positive, since the protons have a positive charge and the neutrons are not charged. **Atomic number** is the number of protons. The nuclear charge or atomic number is given in the top left hand corner of the element box for each element in the periodic table.

How does the periodic table provide information about elements?

In the periodic table, each element is listed according to its atomic number. Each row is called a **period**. Each column

Mark the Text

Identify Definitions

Highlight the definition of each word that appears in bold type.

Which has a positive electric charge, a proton, a neutron, or an electron?

continued

is called a **group** or **family**. Metals are on the left side and in the middle of the table. Non-metals are in the upper right corner. The metalloids form a staircase toward the right side. The block of elements from groups 3 through 12 are the transition metals. Elements in the same chemical group or family have similar chemical properties. For example, group 17 contains very reactive non-metals known as halogens (i.e., fluorine, chlorine, bromine, etc.) Group 18 contains the non-reactive noble gases.

How do Bohr diagrams represent atoms?

Date

A **Bohr diagram** shows the arrangement of subatomic particles in atoms and ions. Electrons are organized in "shells". The first shell holds a maximum of two electrons; the second shell a maximum of eight. When this shell is filled, it is called a **stable octet**. The outermost shell containing electrons is called the **valence shell**. The electrons in this shell are called **valence electrons**. These electrons are involved in chemical bonding. When an atom forms a compound, it acquires a full valence shell of electrons and achieves a stable, low energy state. On the periodic table, elements in Group 1 have 1 electron in their valence shell, elements in Group 2 have 2 (a **lone pair**), elements in Group 3 have 3, and so on.

The Bohr diagram for a potassium atom

What are ionic and covalent compounds?

There are two basic types of compounds: ionic and covalent.

1. Ionic compounds: When atoms gain or lose electrons, they become electrically charged particles called **ions**. An ionic compound contains a positive ion (usually a metal) and a negative ion (usually a non-metal). In **ionic bonding**, one or more electrons transfer from each atom of the metal

continued

to each atom of the non-metal. The metal atoms lose electrons, forming **cations**. For example, aluminum forms a 3⁺ cation as a result of losing three electrons. Some metals are **multivalent** and can form ions in several ways, depending on the chemical reaction they undergo. For example, iron is multivalent because it can lose two or three electrons to become a Fe²⁺ or Fe³⁺ ion. The non-metal atoms gain electrons, forming **anions**. Chlorine gains one electron and forms a 1⁻ anion.

The common ions are sometimes shown in the upper righthand corner of the element's box in the periodic table. For a multivalent metal, the most common charge is listed first.

2. Covalent compounds: In **covalent bonding**, the atoms of a non-metal share electrons with other non-metal atoms. An unpaired electron from each atom will pair together, forming a **covalent bond**. These two electrons are sometimes called a **bonding pair**.

The ionic compound sodium chloride

The covalent compound hydrogen fluoride

What is a Lewis diagram?

A **Lewis diagram** illustrates chemical bonding by showing only an atom's valence electrons and its chemical symbol. Lewis diagrams can be used to represent elements, ions, and compounds.

$$[Mg]^{2+}[\vdots0:]^{2-}$$

hydrogen atom

chlorine ion

magnesium oxide molecule

C	Re
~	,,,

Reading Check

What is a Lewis diagram?

continued

Date

Use with textbook pages 168-180.

The atom and the subatomic particles

1. Use the following vocabulary words to label the diagram.

Vocabulary	
common ion charge other ion charge	symbol atomic number
name	average atomic mass

(a)	00	A	(e)	
` *		4+	(f)	
(b)	l Ti	3+	(')	
(c)	Titanium			
(d)	47.9			

2. Examine the periodic table for the element below and complete the blanks.

35 – Br Bromine 79.9	
(a) atomic number	(b) average atomic mass
(c) ion charge	(d) number of protons
(e) name of element	(f) number of neutrons

3. Complete the following table for the different atoms and ions. The first two rows have been completed to help you.

Element Name	Atomic Number	Ion Charge	Number of Protons	Number of Electrons	Number of Neutrons
potassium	19	1+	19	18	20
phosphorus	15	0	15	15	16
	3	0			
		2+	20		
nitrogen		3–			
	5	0			
argon				18	
	13			10	
chlorine		0			
			11	10	

Section 4.1

Use with textbook pages 174–177.

B	ohr diag	rams						
1.	Define the fo	llowing terms:						
(a) Bohr diagram								
	(b) stable oct	et						
	(c) valence sl	hell						
	(d) valence e	lectrons						
2.	Complete the	e following tab	ole.					
	Atom/Ion	Atomic Number		mber of tons	Number of Electrons		Number of Neutrons	Number of Electron Shells
	neon atom							
	fluorine atom							
	fluorine ion							
	sodium atom							
	sodium ion							
3.	Use the table and ions.	above to dra	w the	Bohr m	odel diagr	am fo	or each of th	e following atoms
	neon atom	fluorine ato	m	fluorine	ion	sodiu	m atom	sodium ion
4.	Draw the Bol	nr model diag	ram fo	or each	of the follo	wing	compounds	
	carbon dioxide	(CO ₂)	amn	nonia (NH ₃)		calcium chlo	ride (CaCl ₂)

Section 4.1

Use with textbook pages 176–180.

Lewis diagrams

	ewis diag	Idilis				
1.	Define the follo	wing terms:				
	(a) Lewis diagr	am				
	(b) Ione pair					-
	(c) bonding pa	ir				
2.	Draw Lewis dia	agrams for eac	h of the followir	ng elements.		
	(a) boron	(b) nitrogen	(c)	aluminium	(d) chlorine	
3.	Draw Lewis dia	agrams for eac	h of the followir	ng ionic comp	ounds.	
	(a) sodium oxi	ide	(b) potassium (chloride	(c) magnesium bron	nide
4.	Draw Lewis dia	agrams for eac	h of the followir	ng covalent co	mpounds.	
	(a) carbon diox	ride, CO ₂ (b) p	ohosphorus trifl	uoride, PF ₃ (c	c) silicon tetrachloride	, SiCl ₄
5.	Draw Lewis dia	agrams for eac	h of the followir	ng diatomic m	olecules.	
	(a) chlorine, Cl	2	(b) nitrogen,	, N ₂	(c) hydrogen, H ₂	

Use with textbook pages 168-180.

Atomic theory and bonding

Match the Term on the left with the best Descriptor on the right. Each Descriptor may be used only once.

dood only onco.					
Term	Descriptor				
1 shell 2.	A. a horizontal row on the periodic table				
period 3.	B. a vertical column on the periodic table				
family 4. ionic	C. an area around the nucleus where electrons exist				
bonding 5.	D. chemical bonding that results from a sharing of valence electrons				
covalent bonding	E. chemical bonding that results when one or more electrons transfers from each atom of a metal to each atom of a non-metal				

- **6.** Which of the following is the smallest particle of an element that can exist by itself?
 - A. ion
 - B. atom
 - C. molecule
 - **D.** compound
- **7.** Which of the following correctly matches the subatomic particle with its charge and location in an atom?

	Subatomic Particle	Location	Charge
A.	proton	nucleus	neutral
В.	neutron	nucleus	positive
C.	electron	shell	positive
D.	electron	shell	negative

- **8.** Which of the following are responsible for bonding?
 - A. nuclei
 - **B.** protons
 - **C.** neutrons
 - **D.** electrons

Use the following diagram of an atom to answer questions 9 to 11.

- **9.** Which labelled part in the diagram represents a neutron?
 - **A.** (a)
 - **B.** (b)
 - **C.** (c)
 - **D.** (d)
- **10.** What is the number of subatomic particle (c) equivalent to?
 - A. atomic number
 - **B.** mass number atomic number
 - **C.** mass number + atomic number
 - **D.** number of electrons + number of protons
- **11.** How many valence electrons are there in this atom?
 - **A.** 2
 - **B**. 4
 - **C.** 6
 - **D.** 7

Ňh

12. Which of the following describes structure (e)?

	CHARGE	SUBATOMIC PARTICLE(S) PRESENT
A.	neutral	electrons and neutrons
B.	positive	protons and neutrons
C.	positive	protons and electrons
D.	negative	electrons

13. Which of the following describes a cation?

I.	examples include Ca ²⁺ and Al ³⁺		
II.	a metal atom that has lost electrons		
III.	has equal numbers of electrons and		
	protons		

- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II, and III
- **14.** Which row of the table is completed correctly for an atom of potassium?

	Atomic Number	Mass Number	Number of Protons	Number of Neutrons	Number of Electrons
A.	19	39	19	20	19
B.	19	39	39	20	20
C.	19	39	20	20	19
D.	39	19	19	19	20

Use the following Lewis diagrams of four hypothetical elements to answer question 15.

·Ma: Di: So·

- **15.** Which of the hypothetical elements shown above represents a metal?
 - A. Ma
 - **B.** Di
 - C. So
 - D. Nh

Use the following Bohr model of an element to answer question 16.

- **16.** Which of the following does the Bohr model represent?
 - A. a neon atom
 - **B.** a sodium ion
 - **C.** a sodium atom
 - **D.** a fluorine atom