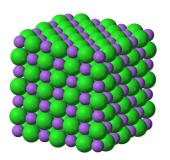
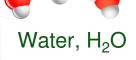
These notes are posted on my site for the following reasons:

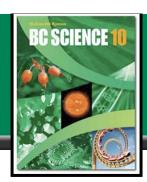

- for students to copy in their own hand-writing
 - in order to complete their class notes
 - if student did not have enough time in class
 - if student was away and missed this section
- for assistants and tutors to follow progress of the concepts taught

Photocopied/printed notes can not be used during the Unit Notebook Check in class.

4.2 Names and Formulas of Compounds



- Ionic compounds are made up of positive and negative ions.
 - All of the positives and negatives organize nicely.
 - Negative-positive attract
 - Negative-negative and positive-positive repel
 - Ionic compounds form from the inside-out as solid crystals
 - lonic compounds are like a solid stack of bricks!
 - A salt shaker contains thousands of small pieces of NaCl


Salt, NaCl

- Covalent molecules share electrons.
 - There is generally no order to the formation of covalent molecules
 - These molecules clump together as solids, liquids or gases
 - Covalent molecules are like a play-pit full of plastic balls
 - Each plastic ball = 1 covalent molecule of H₂O
 - Pit full of balls = swimming pool full of water

See pages 184 - 185

The Chemical Name and Formula of an Ionic Compound

- Ionic compounds are composed of cations and anions.
 - The name of an ionic compound = cation + anion-ide
 - For example, an ionic compound forms between magnesium and oxygen
 - The cation is the first part of the name, magnesium
 - The anion forms part of the ending of the name, <u>oxygen</u>
 - Add <u>-ide</u> to the end of the name to form <u>magnesium oxide</u>.
- lonic formulas are based on the ions of the atoms involved
 - Remember the naming principles above
 - For example, what is the name of Ca₃N₂?
 - Ca, the cation, is calcium
 - N, the anion, is nitrogen
 - Drop the end of the anion and add -ide
 - Calcium nitride

Magnesium oxide is used as a drying agent.

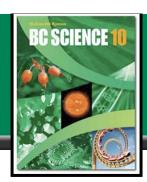
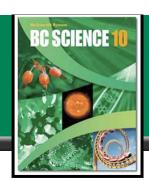


Photo courtesy of the U.S. Department of Energy

See pages 186 - 187

(c) McGraw Hill Ryerson 20<mark>07</mark>

The Chemical Name and Formula of an Ionic Compound (continued)


- Writing formulas for ionic compounds.
 - In an ionic compound, the positive charges balance out the negatives
 - The ratio of positive:negative charges gives the proper formula
 - The ratio is always written in reduced form
 - For example, what is the formula for magnesium phosphide?
 - Magnesium is Mg²⁺ phosphorous is P³⁻
 - Lowest common multiple of 2 and 3 is 6
 - 3 Mg²⁺ ions and 2 P³⁻ions
 - $\blacksquare Mg_3P_2$
 - Try the formula for calcium oxide
 - calcium is Ca²⁺ oxygen is O²⁻
 - 1 Ca²⁺ ion and 1 O²⁻ions
 - Ca₂O₂ which is simplified and written as CaO

Calcium oxide, aka "quicklime" was produced by cooking limestone in ancient kilns.

See page 188

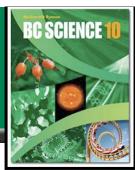
Formula of an Ionic Compound with a Multivalent Metal

- Some transitional metals are <u>multivalent</u>, meaning they have more than one ion form.
 - On the periodic table, the most common form of the ion is listed on top

fluorine is F-

- In the name of the compound, roman numeral are used following the cation to indicate which ion was used
- For example, what is the formula manganese (III) sulphide?
 - This manganese is Mn³+ sulphur is S²-
 - Lowest common multiple of 3 and 2 is 6
 - 2 Mn³⁺ ions and 3 S²⁻ions
 - Mn_2P_3
- Try the name for TiF₄
 - titanium is Ti⁴⁺ or Ti³⁺

iitailiulii 15 11 Ol 11


- 1 Ti⁴⁺ ion and 4 F⁻ ions
- Titanium (IV) fluoride

25 2+ Mn 3+ 4+ Manganese 54.9

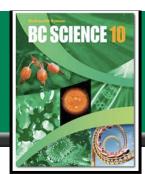
22 4+ **Ti** 3+ Titanium 47.9

See pages 189 - 191

Polyatomic Ions

- Some ions, called polyatomic ions, are made up of several atoms joined together (ironically, joined with covalent bonds).
 - The whole group has a + or charge, not individual atoms.
 - What is the formula of sodium sulphate? Na⁺ and SO₄²⁻

Na₂SO₄

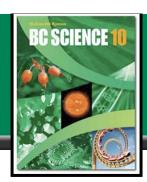

• What is the name of the compound KCIO? K⁺ = potassium CIO⁻ = hypochlorite

Potassium hypochlorite

Table 4.12 Names, Formulas, and Charges of Some Polyatomic Ions			
Positive Ions	Negative Ions		
NH ₄ + ammonium	CH ₃ COO ⁻ acetate	HCO ₃ – hydrogen carbonate, bicarbonate	NO ₂ – nitrite
·	CO ₃ ²⁻ carbonate	HSO ₄ hydrogen sulphate, bisulphate	ClO ₄ – perchlorate
	ClO ₃ -chlorate	HS ⁻ hydrogen sulphide, bisulphide	MnO ₄ – permanganate
	ClO ₂ - chlorite	HSO ₃ hydrogen sulphite, bisulphite	PO ₄ ³⁻ phosphate
	CrO ₄ ²⁻ chromate	OH ⁻ hydroxide	PO ₃ 3- phosphite
	CN - cyanide	CIO hypochlorite	SO ₄ ^{2 –} sulphate
	Cr ₂ O ₇ ²⁻ dichromate	NO ₃ ⁻ nitrate	SO ₃ ²⁻ sulphite

See pages 192 - 193

Names and Formulas of Covalent Compounds


- Covalent compounds, also called <u>molecules</u>, rely on the chemical formula to reveal the components of the molecule.
 - Covalent compounds are made up of two or more non-metals.
 - Names may reveal the components, but often do not
 - Subscripts mean something different in covalent compounds
 - Ionic compounds subscripts show smallest whole-number ratio between the ions in the compound

- Covalent molecules have subscripts that show the actual number of atoms in the molecule
- What is the chemical formula for the molecule ethanol?
 - C₂H₆O, a name that must be memorized or looked up when needed
- What is the name of the molecule C₁₂O₂₂H₁₁
 - Sucrose, aka table sugar

See page 193

Naming Binary Covalent Compounds

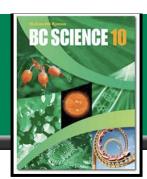

- Binary covalent compounds (two non-metal atoms) use a system of prefixes.
 - Covalent compounds may have many or few atoms sharing electrons
 - CH₄ = methane and C₂₅H₅₂ = candle wax
 - Prefixes are often used before the atom name to indicate the number of atoms in the molecule.
 - CO = carbon monoxide, CO₂ = carbon dioxide
 - Write the most metallic atom (furthest left) first
 - Ad -ide to end of the second atom's name
 - What is the chemical formula for the molecule trinitrogen tetrachloride?
 - N₃Cl₄
 - What is the name of the molecule Si₃P₆
 - Trisilicon hexaphosphide

Table 4.13 Prefixes Used in Naming Binary Covalent Compounds

Prefix	Number
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

See pages 194 - 195

Comparing Ionic and Covalent Compounds

- To determine whether a compound is ionic or covalent:
 - 1. Examine the formula
 - Ionic compounds start with a metal or the ammonium ion
 - Covalent compounds start with a non-metal
 - 2. If the compound is covalent...
 - Use the prefix system of naming if the compound is binary and does not start with hydrogen
 - If there are more than two different elements, or it starts with H, there is probably a different, simpler name for the covalent molecule
 - 3. If the compound is ionic
 - Check the metal to see if it is multivalent (add a roman numeral if it is multivalent). Naming starts with the name of the metal atom.
 - If it ends with a single non-metal, naming will just end in -ide
 - If it ends in a polyatomic ion, look up the name/formula

See pages 196 - 197