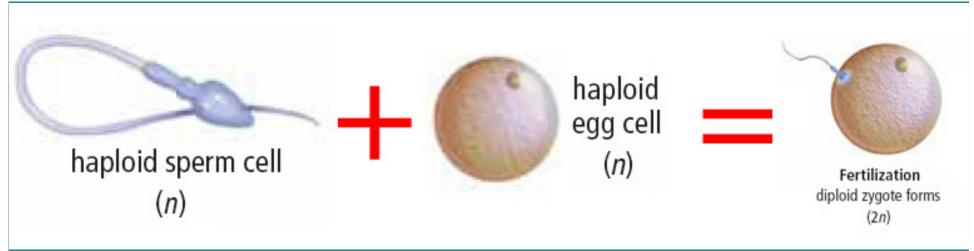

These notes are posted on my site for the following reasons:

- for students to copy in their own hand-writing
 - in order to complete their class notes
 - if student did not have enough time in class
 - if student was away and missed this section
- for assistants and tutors to follow progress of the concepts taught

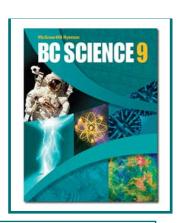
Photocopied/printed notes can not be used during the Unit Notebook Check in class.

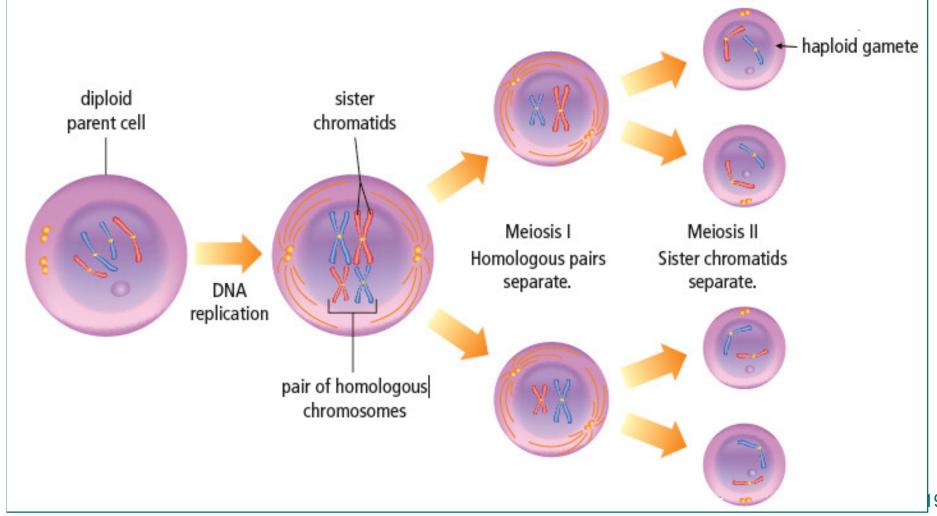
6.1 Meiosis


- Meiosis is an important aspect of sexual reproduction
- Sexual reproduction, through the shuffling of DNA, produces genetic diversity.
- This variation offspring produces individuals that may have advantages over one another.

See pages 188 - 189

Role of Gametes


- Normal body cells have a diploid chromosome number, meaning chromosomes occur in pairs. In humans, the male and female each contribute 23 chromosomes - when fertilization takes place, 23 (egg) + 23 (sperm) = 46 (zygote)
- The zygote goes on to develop into an embryo, and on into a complete individual. When the time comes, the cycle repeats humans produce gametes (either egg or sperm) that have half (haploid) the normal number of chromosomes.



See page 190

Meiosis

 Meiosis produces gametes with half the chromosomes compared to body cells: [copy and caption figure 6.4 page 191]

Meiosis Events

Meiosis I

 Matching chromosome pairs (homologous chromosomes) move to opposite poles of the cell - two daughter cells result.

Meiosis II

 Chromatids of each chromosome are pulled apart - the end result is four haploid cells, each with half the number of chromosomes. These develop into gametes.

Crossing Over

 In meiosis I, chromatids of chromosome pairs can cross over each other and exchange DNA segments - this increases genetic possibilities and produces more variation

Independent Assortment

 The pairs of chromosomes in meiosis I separate independently, creating many different combinations of chromosomes in the daughter cells

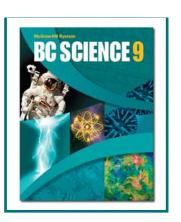
See pages 191 - 193

Meiosis Details

Gametes do not form equally in males and females

- In males, all 4 cells from meiosis develop into sperm.
- In females, 1 cell becomes the egg.

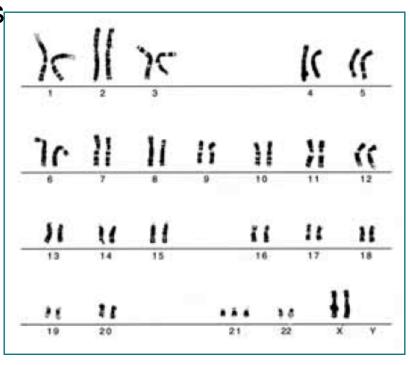
Chromosome mutations sometimes occur spontaneously


 Chromosome changes during meiosis can cause changes in the genetic information. Parts of chromosomes can be inverted, deleted, duplicated or moved to another spot.

Chromosome mutations can occur because of mutagens

 Chromosome changes, sometimes leading to genetic disease or death, can be cause by mutagens such as radiation or chemicals.

Failed separation of chromosomes in meiosis has serious consequences


 Failed separation means that a gamete may end up with no chromosome or too many of a chromosome. These zygotes rarely survive, and if they do, they will have serious genetic disorders.

Genetic Disorders

The chromosomes of an individual can be studied

- By using a karyotype, geneticists can view one's chromosomes.
- Certain genetic disorders or syndromes occur when there are specific chromosomes extra or missing
- Down syndrome usually occurs when there is an extra 21st chromosome

Down syndrome karyotype

Take the Section 6.1 Quiz

See pages 196 - 197